M-Polynomial and Degree-Based Topological Indices
نویسنده
چکیده
Let G be a graph and let mij(G), i, j ≥ 1, be the number of edges uv of G such that {dv(G), du(G)} = {i, j}. TheM -polynomial ofG is introduced withM(G;x, y) = ∑ i≤j mij(G)x y . It is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular case to the single problem of determining the M -polynomial. The new approach is also illustrated with examples.
منابع مشابه
M-polynomial and degree-based topological indices
Let $G$ be a graph and let $m_{ij}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The {em $M$-polynomial} of $G$ is introduced with $displaystyle{M(G;x,y) = sum_{ile j} m_{ij}(G)x^iy^j}$. It is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular ca...
متن کاملOn the M-polynomial of planar chemical graphs
Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...
متن کاملM-Polynomial and Related Topological Indices of Nanostar Dendrimers
Dendrimers are highly branched organic macromolecules with successive layers of branch units surrounding a central core. The M-polynomial of nanotubes has been vastly investigated as it produces many degree-based topological indices. These indices are invariants of the topology of graphs associated with molecular structure of nanomaterials to correlate certain physicochemical properties like bo...
متن کاملSome Computational Aspects of Boron Triangular Nanotubes
The recent discovery of boron triangular nanotubes competes with carbon in many respects. The closed form of M-polynomial of nanotubes produces closed forms of many degree-based topological indices which are numerical parameters of the structure and, in combination, determine properties of the concerned nanotubes. In this report, we give M-polynomials of boron triangular nanotubes and recover m...
متن کاملOn ev-degree and ve-degree topological indices
Recently two new degree concepts have been defined in graph theory: ev-degree and ve-degree. Also the evdegree and ve-degree Zagreb and Randić indices have been defined very recently as parallel of the classical definitions of Zagreb and Randić indices. It was shown that ev-degree and ve-degree topological indices can be used as possible tools in QSPR researches . In this paper we d...
متن کامل